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LIQUID CRYSTALS, 1990, VOL. 8, No. 4, 473-480 

The effect of a finite anchoring energy on the transient periodic 
structures in nematic liquid crystals 

by S. CIAPONI and S. FAETTIt 
Dipartimento di Fisica dell’Universita’ di Pisa, and 

tGruppo Nazionale delle Ricerche del CNR, Piazza Torricelli 2, 56100 Pisa, Italy 

(Received 13 February 1990; accepted 27 April 1990) 

Non-equilibrium transient periodic structures have been widely observed in 
thermotropic and lyotropic nematic liquid crystals. So far only the case of strongly 
anchored nematics has been considered. Here we investigate the influence of a 
finite anchoring energy on the nonequilibrium transient pattern in a twist geometry. 
Both the domain wavelength and the threshold field for the non-equilibrium 
pattern have been calculated for different values of the anchoring energy. 

1. Introduction 
Recently many experimental and theoretical results about non-equilibrium tran- 

sient periodic structures induced by magnetic fields in nematic liquid crystal layers 
have been reported [I-91. The easy experimental investigation of these patterns makes 
them very interesting to study the general phenomenon of the occurrence of spon- 
taneous dynamic structures [ 10- 121. All previously published papers consider the 
special case of strong director anchoring at  the two plane interfaces of the nematic 
layer. In this paper we investigate the influence of a finite anchoring energy on the 
characteristic wavelength and on the threshold field for the periodic dynamic pattern. 
The following linear stability analysis is similar to that presented by Guyon et  al. [2] 
and by Londberg et  al. [6]. 

We consider a nematic layer of thickness d sandwiched between two parallel solid 
plates treated in such a way as to induce a homogeneous planar alignment of the 
director n (average molecular axis) along the x axis in the plane of the layer. A 
uniform magnetic field B can be applied along the y axis orthogonal to the x axis in 
the plane of the layer. The nematic is assumed to have a positive diamagnetic 
anisotropy xa = I,, - xl. As is well known [13, 141, the nematic layer exhibits an 
ordinary Freederickz transition to a homogeneous twisted director distortion when 
the magnetic field exceeds a threshold value Bk. For strong anchoring the threshold 
field is given by 

B; B, = n/d (K22/,ya)1/2, 

where K22 is the twist elastic constant of the nematic. A transition to a transient 
periodic pattern occurs over all the nematic layer if the magnetic field exceeds a new 
threshold value Bg > &. Among possible periodic patterns, the distortion which 
corresponds to the fastest growth rate suppresses all slower ones and becomes 
macroscopically observable. The decay time of the non-equilibrium periodic pattern 
greatly depends on the viscosity coefficients of the nematic and so it becomes very long 
in the case of polymeric and lyotropic nematics. This property makes these system 
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414 S. Ciaponi and S. Faetti 

particularly suitable for direct experimental investigations. The physical mechanism 
responsible for the onset of the non-equilibrium periodic texture has been widely 
discussed in [l-91. The main reason for this behaviour is due to the strong coupling 
between the hydrodynamic motion and the director orientation for a periodic distor- 
tion. For large enough magnetic fields, this coupling reduces the effective orientational 
viscosity seen by the periodic distortion and favours its occurrence. 

2. Theory of transient patterns in the presence of finite anchoring 
In order to investigate the occurrence of the periodic pattern in the presence of a 

finite anchoring of the director on the two plane interfaces of the nematic layer we 
make the following standard assumptions: 

( I )  Reorientation of the director occurs entirely in the xy plane of the layer. 
Therefore the director can be written as n = (cos 6, sin 6,0), where 6 is the 
angle which the director makes with the easy axis x. 

(2) The director field is homogeneous along they axis parallel to the magnetic field 
and thus, 6 = 6(x,z,  I). Furthermore we suppose that the hydrodynamic 
velocity is fully directed along the y axis: v 5 (v, = 0, vy = vy(x ,z , r ) ,  

(3) Since we are interested in the behaviour of the transient periodic pattern near 
the threshold we consider small values of 6 and vy . Therefore, we can use for 
the anchoring energy of the director the simple form W(0) = WOO2, where W, 
is the azimuthal anchoring energy coefficient (6 = 0 corresponds to the easy 

v, = 0). 

director axis). 

The linearized nematodynamic equations for the balance of bulk 
are, respectively: 

a a26 azVy azVy 
P p y  = a2- + t l c x  + t l a x  axat 

and 

forces and torques 

(1) 

a av a2 6 a2 6 
yI 5 6 = -a2  2 + K,, - + K22 + x.B26, ax2 a Z  

with the following boundary conditions on the surfaces ( f d/2) of the two solid plates: 

v,,(x, f d / 2 , t )  = 0 (3) 

and 

where the sign f corresponds to the upper and lower surface of the nematic layer, 
respectively, and 

t la  = a,/2, t l c  = (ad + 1x5 - a6)/2 and a2 = (72 - ~ , ) / 2  

are viscosity coefficients [ 131 of the nematic; K,, and K2, are the bend and twist elastic 
constants, whilst W, is the anchoring energy coefficient [13]. 

As shown in [2] the contribution of the inertial term (p(av,/at) in equation (2))  can 
be neglected for small enough thicknesses of the nematic layer. Equation (1) to (4) can 
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Periodic transient patterns in nematics 415 

be rewritten in adimensional units by defining the time unit 7 = y,/x,B; and the 
length unit d, where B, is the Freederickz threshold field. 

a2 a28 qc a2vy a2vy 0 = -- +-7+- 
I], axat I]. ax a z 2  ’ 

a av K,, a2e 1 a2e a 
at ylax n 2 ~ ~ ~  a? K 2  a t  +-- + -- + h2e, -8 = -2 

where we have introduced the adimensional reduced magnetic field h = BIB, and the 
adimensional extrapolation length [13, 141, b = K22/(2WOd). We note that exactly the 
same equations are obtained for a nematic liquid crystal having a negative diamagnetic 
anisotropy. This is, for instance, the case of some lyotropic nematic liquid crystals. In 
this latter case, however, the magnetic field must be oriented parallel to the easy axis 
for the director (x axis) and the threshold field for the Freederickz transition is 
Bc = n/d(K22/l~al)”2. We look, now, for a solution of equations (5) to (8) of the form 

@,z, t) = O(z)exp(iqx + st ) ,  (9) 

v,,(x,z,t) = v(z)exp(iqx + st) ,  (10) 

where q is the adimensional wavevector of the periodic pattern, and s is the adimen- 
sional growth rate of the periodic pattern. The initial homogeneous alignment of the 
director field becomes unstable with respect to the space fluctuation of wavevector q 
if the real part of s becomes greater than zero. By substituting equations (9) and (10) 
in equations (5)-(8) we obtain 

v(+1/2) = 0, (13) 

Therefore v(z) satisfies the fourth order differential equation 

where 

d4 d2 
- v(z) + a - v(z) + flv(z) = 0, dz4 dzz 

and 

q + - I]& - h2) - - 9 2 .  p = -  
K33rlc  K22 I]= n2 I]a [ a:s YI 1 
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476 S. Ciaponi and S. Faetti 

The non-trivial solutions of equations (1 5 )  and (1 1) which satisfy the boundary 
conditions (1 3) and (1 4) are 

exp (1, z )  + exp (- 1, z) - exp (1,~) + exp (- 1,z) 
exp(1,/2) + exp(-l1/2) exp(12/2) + exp(-12/2) 

V ( Z )  = A 

where 

A1,, = .[- g f (; - q2]  
and A is an arbitrary adimensional constant which depends on the initial conditions. 
The growth rate s can be obtained by substituting the expressions for v(z )  and O(z) in 
equations (1 1) and (1 2) to give 

By equating the two expressions of s corresponding to 1, and l2 in equation (21) we 
find 

1 2  = [-a:(1: + n2h2) + ? l ~ c n : l $  + [(K33/K22)a: + <a: - y l q c ) ( ~ c / ~ a ) l q 4 .  
(22) 

V a Y I 4  + <a: - Y1tlc)42 
I 

This equation relates A1 to L2 for a given value of the wavevector q and of the reduced 
magnetic field, h. Another relation concerning the same parameters can be obtained 
by substituting equations (18) and (19) into the boundary condition of the equation 
(14) 

Equations (22) and (23) allow us to obtain A1 and for different values of the 
wavevector q of the periodic pattern, of the reduced magnetic field h and of the 
anchoring energy coefficient (b = K2,/2 W,d).  

3. Threshold field of the periodic transient pattern 
By substituting the solution of equations (22) and (23) for or A2 into equation 

(21) we obtain the growth rates of the periodic pattern of wavevector q. The threshold 
field for the growing of the periodic pattern is reached when the real part of the 
corresponding value of s becomes greater than zero. According to previous work [ 1-91 
among various unstable patterns (Res > 0) the macroscopic one is that which 
exhibits the maximum value of Res. We denote by qc the wavevector corresponding 
to this easy pattern. Equation (22) and (23) can be solved numerically to calculate s(q) 
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Figure 1. Adimensional growth rate s (time unit z = versus the adimensional 
wavevector q (length unit d = thickness of the nematic layer) of the periodic pertur- 
bation for the reduced extrapolation length b = 0.01 (b  = K22/(2WOd)) and for some 
values of the reduced magnetic field h = B/B,.  Curve a: h = 0.8, curve b: h = 1.313 
( h  GZ h:), curve c: h = 2.5 and curve d: h = 3. The elastic and viscosity coefficients 
used for the numerical calculation are: qa = a4/2 = 0.24p, qc = (a4 + a5 - a6)/2 = 
1 . 0 3 ~  and a2 = (y2  - yl)/2 = -0.77p, yI = 0.76p, K,, = 8 x lO-’dyn and K22 = 
3.4 x IO-’dyn. 

and the easy wavevector qc for given values of the physical parameters of the nematic 
(see the values given in figure 1). As a main result of the numerical calculation we find 
that s(q) always remains a real number and thus, a stationary transition to the periodic 
pattern occurs. Figure 1 shows some s(q) curves for different values of the reduced 
magnetic field h and for b = 0.01. Analogous behaviour is obtained at different 
values of the extrapolation length 6 .  Depending on the value of the reduced magnetic 
field h and of the reduced extrapolation length b three different types of behaviour 
occur: (a) if h < hi,  s(q) is lower than zero for all values of q and thus, the planar 
homogeneous state is stable (see figure I ,  curve a). (b) If h: < h < h:, the s(q) curve 

Figure 2. Threshold reduced fields h: (a  curve) and h: (b  curve) versus the logarithm of the 
reduced extrapolation length b. h: corresponds to the threshold field for the ordinary 
Freederickz transition (see equation (26) )  whilst h: corresponds to the threshold for the 
periodic transient pattern (see equation (3 I)). The numerical values of the elastic and 
viscosity coefficients of the nematic used to make the numerical calculations are the same 
as those in figure 1. 
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exhibits a positive maximum at q = 0 and thus, the ordinary homogeneous Freederickz 
transition occurs. (c) If h > hfl, the relative maximum at q = 0 disappears and is 
replaced by a new maximum at a given wavevector q = qc # 0. Therefore h = hi 
corresponds to the ordinary threshold field of the Freederickz transition whilst h: 
corresponds to the threshold field of the periodic transient pattern. Curve 6, c and d 
in figure 1 corresponds to h = h:, h w 1.9hfl and h w 2.3hfl, respectively. The phase 
diagram of the system is shown in figure 2. Figure 3 shows the easy wavevector qc 
versus the magnetic field h for three different values of the extrapolation length. The 
behaviour of the easy wavevector qc close to the threshold is evidenced in figure 3 (6). 
For h 2 hfl, qE exhibits the typical dependence which characterizes a second order 
transition. 

The Freederickz threshold field hi can be calculated by substituting q = 0 into 
equations (22) and (23). We find 

A ,  = 0 (24) 

and 

where A: is a real number defined as A: = & / i .  For q = 0 the growth rate s of 
equation (21) becomes greater than zero if h 2 h: = A:/.. Therefore, by using 
equation (25) we recover the known Rapini [14] expression for the Freederickz 
threshold in the presence of finite anchoring 

To obtain the analytical expression of hfl we note that this threshold field corresponds 
to a change of sign of the curvature of the function s(q) at q = 0 (see figure 1). 
Therefore h: can be calculated by studying the parabolic expansion of s(q) close to 

Figure 3. Characteristic adimensional wavevector qc of the periodic pattern as a function 
of the reduced magnetic field for some values of the reduced extrapolation length: 
(a) b = 10, (b) b = 0.1, (c) b = 0.001. In (b) details of the near threshold behaviour are 
evidenced. The numerical values of the elastic and viscosity coefficients of the nematic 
used to make the numerical calculations are the same as those in figure I .  
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Periodic transient patterns in nematics 479 

q = 0 by using a standard perturbative analysis. We first calculate approximate 
expressions for A: and 1: at second order in the small parameter q by looking for a 
solution of equations (22) and (23) of the kind 

= Y (27) 

1:(q) = -1y + x = -n2hf2 + x, (28) 

and 

where x and y are small parameters and 1: is the solution of equation (25). By making 
a first order expansion of equations (22) and (23) in the small parameters x and y and 
by exploiting equation (25) we obtain x and y as a function of 4‘. By substituting 1:(q) 
into equation (21) and by making a power expansion of s(q) at second order in q we 
find 

4q)  = 40) - W d  + Oh4), (29) 
where 

The threshold field hfl is given by the condition 6(h:) = 0 which is satisfied for 

In the strong anchoring case (b = 0) we recover the known results [2] 

whilst, in the weak anchoring limit (b -+ m), we find 

hf = -(i) 1 2 I / 2  , 
n (34) 

This means that at large b values the threshold field of the transient pattern is almost 
independent of the anchoring energy coefficient. Therefore the stability region of the 
homogeneous twist becomes larger and larger as the anchoring energy coefficient 
decreases. The typical behaviour of h: and hfl, as given by equations (26) and (31), is 
shown in figure 2. 

4. Conclusions 
Here we have investigated the influence of a finite anchoring energy on the 

characteristic behaviour of the transient patterns which occur in some nematic liquid 
crystals when a magnetic field is applied above a threshold value. We find that the 
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480 S .  Ciaponi and S .  Faetti 

transition from the homogeneous Freederickz director arrangement to the periodic 
one always occurs as a second order transition (see figures 1 and 3) and the homo- 
geneous and the transient periodic patterns are present for all values of the anchoring 
energy coefficient (see the phase diagram in figure 2). This means that the finite 
anchoring at the two plane surface of the nematic layer affects the qualitative behaviour 
of the system weakly. An analytical expression for the threshold field of the periodic 
pattern is obtained as a function of the reduced extrapolation length. In contrast to 
the threshold of the Freederickz transition, the threshold of the transient pattern does 
not tend to zero as the anchoring energy coefficient approaches zero. 
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